PERBANDINGAN EFEK LARVASIDA DAUN KEMANGI DENGAN PENGENCER TWEEN 80 DAN PEG 400 TERHADAP LARVA AEDES AEGYPTI

  • Listiana Masyita Dewi Universitas Muhammadiyah Surakarta
  • Devan Adil Syah Universitas Muhammadiyah Surakarta
  • Rochmadina Suci Bestari Universitas Muhammadiyah Surakarta
  • Devi Usdiana Rosyidah Universitas Muhammadiyah Surakarta

Abstract

Pengendalian populasi Aedes aegypti sebagai vektor DBD merupakan upaya utama memutus rantai penularannya. Namun, resistensi Aedes aegypti terhadap larvasida temephos mulai banyak terjadi. Diperlukan alternatif larvasida berbasis bahan alam sebagai larvasida, yaitu dari daun kemangi. Penambahan pengencer seperti Tween 80 dan PEG 400 diharapkan dapat meningkatkan efektivitasnya. Penelitian ini bertujuan membandingkan efektivitas ekstrak daun kemangi dengan penambahan Tween 80 dan PEG 400 terhadap larva Aedes aegypti. Metode penelitian yang digunakan adalah post-test only crontrolled group design. Larva Aedes aegypti yang digunakan sebanyak 700 ekor, terbagi dalam 7 kelompok perlakuan, dan 4 kali pengulangan. Konsentrasi ekstrak daun kemangi yang digunakan adalah 0.5% dan 1%. Analisa data menggunakan uji Kruskal Wallis dan uji post-hoc Mann Whitney. Hasil uji Kruskal Wallis didapatkan nilai p<0.05. Hasil uji post-hoc Mann Whitney, perbandingan antara kelompok dengan penambahan Tween 80 dan PEG 400 didapatkan nilai p<0.05, sedangkan perbandingan kelompok dengan penambahan Tween 80 dan kontrol positif didapatkan nilai p>0.05. Sebagai kesimpulan, ekstrak daun kemangi dengan penambahan Tween 80 sama efektifnya dengan temephos sebagai larvasida terhadap Aedes aegypti, dan lebih superior dibandingkan ekstrak daun kemangi dengan penambahan PEG 400.

References

CDC. Dengue _ CDC Yellow Book 2024. Published 2023. Accessed September 19, 2023. https://wwwnc.cdc.gov/travel/yellowbook/2024/infections-diseases/dengue

ECDC. Dengue Worldwide Overview. Published 2023. Accessed September 19, 2023. https://www.ecdc.europa.eu/en/dengue-monthly

Kementerian Kesehatan RI. Informasi Dengue 2023. Published 2023. Accessed September 19, 2023. https://p2pm.kemkes.go.id/publikasi/infografis/info-dbd-minggu-ke-33-tahun-2023

Wilson AL, Courtenay O, Kelly-Hope LA, et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis. 2020;14(1):1-31. doi:10.1371/journal.pntd.0007831

Dewi LM, Ariffah HZ, Aisyah R, Nurhayani N. Bio-larvicidal Potential of Betel Leaves (Piper betle L) Ethanolic Extract in Addition of PEG 400 Diluent on Aedes aegypti Larvae. Biology, Medicine, & Natural Product Chemistry. 2023;12(2):451-455. doi:10.14421/biomedich.2023.122.451-455

Khan HAA, Akram W. Resistance Status to Deltamethrin, Permethrin, and Temephos Along With Preliminary Resistance Mechanism in Aedes aegypti (Diptera: Culicidae) From Punjab, Pakistan. J Med Entomol. 2019;56(5):1304-1311. doi:10.1093/jme/tjz057

Morales D, Ponce P, Cevallos V, Espinosa P, Vaca D, Quezada W. Resistance Status of Aedes aegypti to Deltamethrin, Malathion, and Temephos in Ecuador. J Am Mosq Control Assoc. 2019;35(2):113-122. doi:10.2987/19-6831.1

Palomino M, Pinto J, Yañez P, et al. First national-scale evaluation of temephos resistance in Aedes aegypti in Peru. Parasit Vectors. 2022;15(1). doi:10.1186/s13071-022-05310-x

Helvecio E, Romão TP, de Carvalho-Leandro D, et al. Polymorphisms in GSTE2 is associated with temephos resistance in Aedes aegypti. Pestic Biochem Physiol. 2020;165. doi:10.1016/j.pestbp.2019.10.002

Shettima A, Ishak IH, Lau B, Abu Hasan H, Miswan N, Othman N. Quantitative Proteomics Analysis of Permethrin and Temephos-Resistant Ae. Aegypti Revealed Diverse Differentially Expressed Proteins Associated with Insecticide Resistance from Penang Island, Malaysia. PLoS Negl Trop Dis. 2023;17(9):e0011604. doi:10.1371/journal.pntd.0011604

Satriawan DA, Sindjaja W, Richardo T. Toxicity of the Organophosphorus Pesticide Temephos. Indonesian Journal of Life Sciences | ISSN: 2656-0682 (online). 2019;1(2):62-76. doi:10.54250/ijls.v1i2.26

Serrano-Lázaro A, Verdín-Betancourt FA, Jayaraman VK, et al. Tracing The Degradation Pathway of Temephos Pesticide Achieved with Photocatalytic ZnO Nanostructured Films. Environ Sci Nano. 2022;9(9):3538-3550. doi:10.1039/D2EN00384H

Firdausi RI, Bestari RS, Dewi LM. Peran Bakteri Wolbachia Terhadap Pengendalian Vektor Demam Berdarah Dengue (DBD) Aedes aegypti. In: The 13th University Research Colloqium 2021. ; 2021. Accessed June 7, 2024. https://repository.urecol.org/index.php/proceeding/article/view/1440/1407

Elfahmi, Woerdenbag HJ, Kayser O. Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. Journal of Herbal Medicine. 2014;4(2):51-73.

Dewi LM, Nafi’ah MQ. Effectiveness of 96% Ethanol Extract of Clove Leaves (Syzygium aromaticum (L.) Merr & Perry) as an Antibacterial Agent Against Staphylococcus epidermidis And Providencia stuartii. MAGNA MEDICA Berkala Ilmiah Kedokteran dan Kesehatan. 2022;9(2):139. doi:10.26714/magnamed.9.2.2022.139-146

Chan CA, Ho LY, Sit NW. Larvicidal Activity and Phytochemical Profiling of Sweet Basil (Ocimum basilicum L.) Leaf Extract against Asian Tiger Mosquito (Aedes albopictus). Horticulturae. 2022;8(5):443. doi:10.3390/horticulturae8050443

Alievi K, Capoani GT, Buzatto M, et al. Ateleia glazioveana and Ocimum basilicum: Plants with Potential Larvicidal and Repellent Against Aedes aegypti (Diptera, Culicidae). Research, Society and Development. 2021;10(17):e228101724733. doi:10.33448/rsd-v10i17.24733

World Health Organization. Guidelines for Laboratory and Fields Testing of Mosquito Larvicides.; 2005. Accessed June 4, 2023. https://www.who.int/publications/i/item/WHO-CDS-WHOPES-GCDPP-2005.13

Pambudi BC, Martini, Tarwotjo U, Hestiningsih R. Efektivitas Temephos Sebagai Larvasida Pada Stadium Pupa Aedes aegypti. JKM e-journal. 2018;6:2356-3346. http://ejournal3.undip.ac.id/index.php/jkm

Gomes A, Costa ALR, Cardoso DD, Náthia-Neves G, Meireles MAA, Cunha RL. Interactions of β-carotene with WPI/Tween 80 mixture and oil phase: Effect on the behavior of O/W emulsions during in vitro digestion. Food Chem. 2021;341:128155. doi:10.1016/j.foodchem.2020.128155

Knoch H, Ulbrich MH, Mittag JJ, Buske J, Garidel P, Heerklotz H. Complex Micellization Behavior of the Polysorbates Tween 20 and Tween 80. Mol Pharm. 2021;18(8):3147-3157. doi:10.1021/acs.molpharmaceut.1c00406

Aftab A, Ali M, Sahito MF, et al. Environmental Friendliness and High Performance of Multifunctional Tween 80/ZnO-Nanoparticles-Added Water-Based Drilling Fluid: An Experimental Approach. ACS Sustain Chem Eng. 2020;8(30):11224-11243. doi:10.1021/acssuschemeng.0c02661

Yadav D, Dewangan HK. PEGYLATION: an important approach for novel drug delivery system. J Biomater Sci Polym Ed. 2021;32(2):266-280. doi:10.1080/09205063.2020.1825304

Zhong X, Dou G, Wang D. Polyethylene Glycol (PEG-400): An Efficient and Recyclable Reaction Medium for the Synthesis of Pyrazolo[3,4-b]pyridin- 6(7H)-one Derivatives. Molecules. 2013;18(11):13139-13147. doi:10.3390/molecules181113139

Ibrahim M, Ramadan E, Elsadek NE, et al. Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products. Journal of Controlled Release. 2022;351:215-230. doi:10.1016/j.jconrel.2022.09.031

Dewi LM, Mufidah F, Sutrisna E, Nurhayani. Larvicidal Effect of 96% Ethanol Extract of Lime (Citrus aurantifolia) Leaves with PEG 400 Diluent on Aedes aegypti Larvae. J Trop Pharm Chem. 2024;8(1):70-76. doi:10.25026/jtpc.v8i1.574

de Souza Wuillda ACJ, Campos Martins RC, Costa F das N. Larvicidal Activity of Secondary Plant Metabolites in Aedes aegypti Control: An Overview of the Previous 6 Years. Nat Prod Commun. 2019;14(7):1934578X1986289. doi:10.1177/1934578X19862893

Kumara CJ, Bestari RS, Dewi LM. Efektivitas Flavonoid, Tanin, Saponin dan Alkaloid terhadap Mortalitas Larva Aedes aegypty. In: The 13 Th University Research Colloqium 2021. ; 2021. Accessed June 6, 2023. http://repository.urecol.org/index.php/proceeding/article/view/1311

Huang Y, Lin M, Jia M, Hu J, Zhu L. Chemical composition and larvicidal activity against Aedes mosquitoes of essential oils from Arisaema fargesii. Pest Manag Sci. 2020;76(2):534-542. doi:10.1002/ps.5542

Castillo-Morales RM, Serrano SO, Villamizar ALR, Mendez-Sanchez SC, Duque JE. Impact of Cymbopogon flexuosus (Poaceae) essential oil and primary components on the eclosion and larval development of Aedes aegypti. Sci Rep. 2021;11(1):24291. doi:10.1038/s41598-021-03819-2

Published
2024-07-06
How to Cite
Dewi, L. M., Syah, D. A., Bestari, R. S., & Rosyidah, D. U. (2024). PERBANDINGAN EFEK LARVASIDA DAUN KEMANGI DENGAN PENGENCER TWEEN 80 DAN PEG 400 TERHADAP LARVA AEDES AEGYPTI. Ibnu Sina: Jurnal Kedokteran Dan Kesehatan - Fakultas Kedokteran Universitas Islam Sumatera Utara, 23(2), 271-278. https://doi.org/10.30743/ibnusina.v23i2.680
Section
Research Article